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Abstract
We propose dgMARK, a decoding-guided water-
marking method for discrete diffusion language
models (dLLMs). Unlike autoregressive models,
dLLMs can generate tokens in arbitrary order.
While an ideal conditional predictor would be
invariant to this order, practical dLLMs exhibit
strong sensitivity to the unmasking order, creating
a new channel for watermarking. dgMARK steers
the unmasking order toward positions whose high-
reward candidate tokens satisfy a simple parity
constraint induced by a binary hash, without ex-
plicitly reweighting the model’s learned probabili-
ties. The method is plug-and-play with common
decoding strategies (e.g., confidence, entropy, and
margin-based ordering) and can be strengthened
with a one-step lookahead variant. Watermarks
are detected via elevated parity-matching statis-
tics, and a sliding-window detector ensures ro-
bustness under post-editing operations including
insertion, deletion, substitution, and paraphrasing.

1. Introduction
Large Language Models (LLMs) now generate coherent and
high-quality text, enabling applications in question answer-
ing (Yue, 2025), programming (Jiang et al., 2026), and aca-
demic writing (Perkins, 2023). At the same time, this capa-
bility raises serious risks: machine-generated content can be
weaponized for disinformation (Ranade et al., 2021), phish-
ing (Karanjai, 2022), and plagiarism (Kasneci et al., 2023),
and may exacerbate copyright infringement (Rillig et al.,
2023), identity theft (Kumar et al., 2024), and fraud (Mirsky
et al., 2023). As LLMs become more accessible, reliable
provenance tools that distinguish machine-generated from
human-authored text are increasingly important (Bender
et al., 2021; Crothers et al., 2023).

Watermarking is one of the most practical approaches to
content provenance. LLM watermarking methods embed
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subtle statistical signals that can later be detected (Feng
et al., 2025; Wu et al., 2025a). Most existing schemes, how-
ever, are designed for autoregressive models (ARMs) and
assume left-to-right generation. A prominent class explic-
itly biases token probabilities, typically by partitioning the
vocabulary into “green” and “red” lists and shifting mass
toward green tokens (Kirchenbauer et al., 2023), which can
degrade text quality. Another line aims to reduce distortion
by conditioning sampling on long pseudo-random keys (Ku-
ditipudi et al., 2024), but may incur slower detection and
limited scalability. Crucially, both paradigms rely on a fixed
causal context (i.e., previous tokens or n-grams), which is
unavailable when generation is not strictly left-to-right.

Recently, discrete diffusion language models (dLLMs) (Lou
et al., 2024; Nie et al., 2025) have emerged as a strong
alternative to the autoregressive paradigm. dLLMs itera-
tively denoise masked sequences and can finalize tokens
in arbitrary order, supporting adaptive decoding strategies
and controllable generation (Yu et al., 2025; Li et al., 2025).
This order-agnostic decoding both creates challenges and
opens new opportunities for watermarking. On one hand,
the “previous token” used by ARM watermarks is often
undefined during diffusion decoding. On the other hand,
dLLMs expose the decoding order as a new control knob.
In principle, if a dLLM learned all conditional distributions
perfectly, the unmasking order would not affect the result-
ing generation statistics. In practice, however, decoding
order does matter: recent analysis shows that choosing the
decoding order adaptively can substantially change genera-
tion quality and behavior in masked diffusion models (Kim
et al., 2025). This gap between ideal order-invariance and
practical order-sensitivity suggests an appealing direction:
embed watermarks by steering the decoding order, without
explicitly reweighting the learned probabilities.

Very recent preprints have begun exploring watermarking
for dLLMs (Bagchi et al., 2025; Wu et al., 2025b; Gloaguen
et al., 2025; Raban et al., 2026). These works address the
missing left-to-right context via predictive or bidirectional
context construction, or via controlled sampling procedures
(e.g., seeded randomness) to enable detection. While ef-
fective, most approaches still embed signals by altering the
token selection probability, and do not exploit decoding
order itself as the primary watermarking channel.
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Figure 1. Overview. (Left) Existing autoregressive watermarking methods generate green/red token sets by hashing the preceding context
and embed watermark signals by biasing the sampling distribution toward green tokens. (Middle) In contrast, decoding in dLLMs does
not follow the traditional left-to-right generation process; instead, the model selects high-reward tokens at each position even in the
absence of prior context. (Right) The proposed method leverages these rewards and embeds watermark signals by prioritizing tokens with
high reward that satisfy the parity condition.

This paper introduces dgMARK, a decoding-guided water-
marking method for dLLMs (Figure 1). Unlike probability-
biasing watermarks, dgMARK does not manually alter or
reweight the model’s learned probabilities. Instead, it em-
beds a watermark by guiding which position is unmasked
next. At each step, we apply a lightweight binary hash rule
and prioritize decoding positions whose high-reward can-
didates satisfy a parity constraint tied to the position index.
Over a full sequence, this induces a systematic increase in
the parity-matching rate above the random baseline (0.5),
which serves as the test statistic for detection. Because the
method operates as a wrapper around the decoding policy,
it is compatible with common dLLM decoding strategies
(e.g., confidence-, entropy-, or margin-based ordering), and
it can be strengthened by a one-step lookahead variant. To
ensure robustness to post-editing (insertion, deletion, and
substitution), we use a sliding-window detector that captures
characteristic local deviations caused by alignment shifts.

We evaluate dgMARK on benchmark datasets using state-
of-the-art dLLMs, including LLaDA and Dream. Across
models and tasks, dgMARK achieves strong detectability
with minimal degradation in text quality, and remains robust
under extensive post-editing and paraphrasing. These results
demonstrate that decoding order provides a practical and
complementary watermarking channel for dLLMs.

2. Related Work
Discrete diffusion language models (dLLMs). Diffu-
sion models (Ho et al., 2020; Song et al., 2021b;a) have
achieved strong results in continuous domains such as im-
ages (Rombach et al., 2022; Saharia et al., 2022) and have
been adapted to discrete domains through Masked Diffusion
Models (MDMs) (Austin et al., 2021; Lou et al., 2024; Sa-
hoo et al., 2024; Shi et al., 2024; Ou et al., 2025), which
iteratively denoise masked tokens. A key property of MDMs
and dLLMs is order-agnostic generation: they model con-
ditional distributions under arbitrary masking patterns, ad-

mitting a wide range of decoding strategies (e.g., random,
confidence-, entropy-, and margin-based ordering). Re-
cent large-scale dLLMs such as LLaDA (Nie et al., 2025;
Zhu et al., 2025; Bie et al., 2025) and Dream (Ye et al.,
2025) demonstrate that this paradigm scales competitively,
often matching or surpassing autoregressive models in data-
constrained regimes (Prabhudesai et al., 2025). Industrial
systems including Mercury (Labs et al., 2025) and Gemini
Diffusion (DeepMind, 2025) further highlight the practical
efficiency of diffusion-based decoding. Finally, recent anal-
yses show that while ideal models would be order-invariant,
practical dLLMs can be sensitive to the decoding order, mo-
tivating algorithmic designs that leverage decoding strate-
gies as a first-class control knob (Kim et al., 2025).

Watermarking in LLMs. Digital watermarking has long
been used to trace provenance and embed imperceptible
signals across text, images, and other media (Petitcolas
et al., 1999; Zhu et al., 2018; Liang et al., 2026). In LLMs,
a dominant line of work embeds watermarks by biasing
token probabilities during generation. Representative meth-
ods (Kirchenbauer et al., 2023; Zhao et al., 2023; 2024)
partition the vocabulary into “green” and “red” sets and in-
crease the probability of sampling green tokens; detection is
then performed via statistical tests on the frequency of green
tokens. Although these methods can provide strong de-
tectability guarantees, probability biasing alters the model’s
output distribution and may degrade text quality. To miti-
gate this, distortion-free variants (Kuditipudi et al., 2024;
Christ et al., 2024) aim to preserve the original distribution,
often by conditioning sampling on a long pseudorandom
sequence derived from a secret key, which may introduce ad-
ditional computation compared to simple probability biasing.
Aaronson & Kirchner (2023) adopt the GumbelMax-trick to
ensure distortion-free generation, using an exponential repa-
rameterization of sampling, and subsequent studies extend
this approach (Fu et al., 2024). Despite their differences,
both probability biasing and distortion-free approaches are
fundamentally tailored to left-to-right generation.
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Watermarking beyond left-to-right generation. Recent
work has explored watermarking for settings where gen-
eration is not strictly autoregressive. For example, Chen
et al. (2025) propose watermarking frameworks for order-
agnostic models, but still rely on biasing the token selection
mechanism, thereby retaining a detectability–quality trade-
off. Very recent concurrent preprints have begun study-
ing watermarking specifically for diffusion-style language
models and dLLMs (Bagchi et al., 2025; Wu et al., 2025b;
Gloaguen et al., 2025; Raban et al., 2026). While these
works differ in their embedding and detection choices, a
common theme is to recover watermark signals by directly
controlling token selection (e.g., via probability shaping,
controlled sampling, or key-conditioned token constraints)
rather than exploiting decoding-order degrees of freedom.

3. Decoding-guided Watermarking for dLLMs
3.1. Generic Decoding Strategy

Discrete diffusion language models (dLLMs) differ from
autoregressive models in a crucial way: instead of being
forced to generate text strictly from left to right, they can in
principle reveal tokens in any order. This property arises
because dLLMs are trained to predict a missing token given
an arbitrary subset of revealed tokens. As a result, the same
sequence can be generated through many different decoding
orders, making decoding strategy an essential design choice.

Formally, let pdata denote the true data distribution. Given a
prompt x = (x1, . . . , xm), the goal of dLLMs is to generate
a sequence y = (y1, . . . , yn) such that y ∼ pdata(y|x). For
any subset of revealed indices I ⊂ {1, . . . , n} (where yj is
revealed for j ∈ I) and a target index i /∈ I, the dLLMs
learn a predictor pθ that approximates

pθ(yi|yI , x) ≈ pdata(yi|yI , x),

while treating the remaining tokens as [MASK]. This means
that, ideally, the distribution of y can be factorized along
any permutation π of {1, . . . , n}:

pdata(y|x) =
n∏

i=1

pdata(yπ(i)|yπ(<i), x)

≈
n∏

i=1

pθ(yπ(i)|yπ(<i), x),

where yπ(<i) = {yπ(k)|k < i}. In theory, the choice of
order π should not matter. In practice, however, imper-
fect training causes different decoding strategies to yield
different results, making the decoding strategy a central
component of dLLMs generation (Kim et al., 2025). Ac-
cordingly, the watermark signal observed in practice arises
from approximation error and decoding heuristics.

At each decoding step i, let I = {π(1), . . . , π(i−1)} be the
set of revealed indices. A decoding strategy F(j; pθ, x, yI)
returns, for each unrevealed index j /∈ I, a reward rj and a
sampled candidate token vj . The next index is then chosen
as π(i) = argmaxj /∈I rj , and the corresponding token
will be yπ(i) ← vπ(i). This generic decoding procedure is
summarized in Algorithm 1.

A range of decoding strategies F have been proposed, re-
flecting trade-offs between certainty and exploration (Nie
et al., 2025; Ye et al., 2025; Kim et al., 2025). Common
examples include:

• Random: rewards rj are sampled uniformly at ran-
dom; sample vj ∼ pθ(yj = ·|yI , x).

• Confidence: sample vj ∼ pθ(yj = ·|yI , x) and set
rj = pθ(yj = vj |yI , x).

• Entropy: set rj = −H(Yj |yI , x), where H(·) de-
notes the conditional entropy under pθ.

• Margin: let vj = argmaxv pθ(v|yI , x) and define
rj as the probability gap between the top-1 and top-2
candidates.

In decoding strategies that involve stochastic sampling, the
token vj may either be drawn from pθ(·|yI , x) or chosen
greedily as vj = argmaxv pθ(yj = v|yI , x).

Finally, although parallel decoding methods exist that reveal
multiple tokens at once to speed up generation (Ben-Hamu
et al., 2025; Wei et al., 2025), here we focus on the sequen-
tial framework.

3.2. Problem Setup

Our goal is to design a watermarking strategy for discrete
diffusion language models (dLLMs). In this setting, wa-
termarking means that a sequence y ∼ pdata(y|x) and a
sequence y′ ∼ pθ(y|x) generated by a designated dLLM
can be made statistically distinguishable given a secret key,
while maintaining high text quality.

Most existing watermarking methods for LLMs achieve
detectability by explicitly biasing token probabilities. Al-
though effective, such probability shaping changes the
model’s sampling distribution and can introduce a direct
detectability–quality trade-off. In contrast, dLLMs provide
a different handle: since they generate by iteratively un-
masking tokens and can, in principle, decode in arbitrary
orders, watermarking can be implemented by modifying the
decoding strategy (i.e., the unmasking order) rather than
manually reweighting token probabilities.

Accordingly, we focus on watermarking that embed signals
through the decoding process itself. Concretely, we design
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Algorithm 1 Generic dLLMs Decoding

Require: Prompt x; output length n; predictor pθ; decoding
strategy F

1: y ← [MASK]n; I ← ∅
2: for i = 1, . . . , n do
3: Get {(rj , vj) = F(j; pθ, x, yI) | j /∈ I}
4: C ← {j /∈ I}
5: k⋆ ← argmaxj∈C rj
6: yk⋆ ← vk⋆ ; I ← I ∪ {k⋆}
7: end for
8: Return y

Algorithm 2 dgMARK: Watermarks by Decoding

Require: Prompt x; output length n; predictor pθ; decoding
strategy F ; matching set Gj

1: y ← [MASK]n; I ← ∅
2: for i = 1, . . . , n do
3: Get {(rj , vj) = F(j; pθ, x, yI) | j /∈ I}
4: C ← {j /∈ I | vj ∈ Gj}
5: if C = ∅ then C ← { j /∈ I } end if
6: k⋆ ← argmaxj∈C rj
7: yk⋆ ← vk⋆ ; I ← I ∪ {k⋆}
8: end for
9: Return y

an adaptive ordering strategy that decides which position
to unmask next in a way that enhances detectability, while
using the model’s conditional distributions pθ(yj |yI , x) as-
is (i.e., without explicit probability reweighting). In our
experiments, this design preserves text quality to a large
extent while enabling reliable watermark detection.

We formalize watermarking for dLLMs as a decoding prob-
lem with the following requirements:

1. No probability reweighting: The watermarking pro-
cedure should not manually modify token probabilities
(e.g., via green/red boosting or rejection).

2. Detectability: The watermark must be verifiable from
the generated text y′ and the secret key alone, without
requiring access to the model internals or the prompt.

3. Robustness: The watermark must remain detectable
under random or adversarial post-editing (e.g., inser-
tions, deletions, and substitutions).

3.3. dgMARK: Decoding-guided Watermarking

We now present dgMARK, our watermarking method for
dLLMs. The approach is inspired by prior LLM watermark-
ing schemes (Kirchenbauer et al., 2023), which conceptually
divide the vocabulary into two groups and analyze the fre-
quency of designated tokens. In contrast to those methods,
which modify token probabilities, dgMARK embeds the wa-
termark by guiding the decoding order. A lightweight binary
hashing rule determines which candidate tokens align with
the position index, and the decoder simply prioritizes those
positions. This embeds a detectable signal while leaving the
learned probabilities pθ(yj |yI , x) unchanged.

Given a watermark key ξ, we define a deterministic hashing
function f : V ×Ξ→ {0, 1} that maps each token v ∈ V to
a binary value conditioned on ξ. The function is constructed
so that, for any key ξ, the resulting partition is balanced. At
each position i, the vocabulary is divided as

Gi = {v ∈ V | f(v, ξ) ≡ i (mod 2)}, Ri = V \ Gi,

where Gi is the parity-matching set andRi is the residual.

During decoding, we prioritize indices j whose predicted
tokens satisfy the parity condition (i.e., vj ∈ Gj); among
these, we select the index with the largest reward. If no such
index exists, the procedure falls back toRi. This strategy is
summarized in Algorithm 2.

The dgMARK framework is compatible with any decoding
strategy F . Within dgMARK, the decoding order π is ad-
justed so that positions with parity-matching candidates are
filled first, while remaining positions are handled afterward.
The generated text remains visually indistinguishable from
standard decoding, while its parity-matching rate is system-
atically higher than chance, providing a reliable statistical
watermark signal.

3.4. dgMARK with One-step Lookahead Beam Search

The standard version of dgMARK selects the next index
k⋆ with the highest reward among parity-matching candi-
dates, i.e., indices j /∈ I such that vj ∈ Gj . Although
straightforward, this greedy choice can commit too early to
a locally optimal decision, which may reduce the number of
parity-matching opportunities available in subsequent steps.

To mitigate this issue, we introduce a top-k lookahead vari-
ant. At each step, we first form the candidate set

C = { j /∈ I | vj ∈ Gj },

and if C = ∅ we fall back to C = {j /∈ I} as in standard
dgMARK. We then select the top-k indices T ⊆ C with the
largest rewards rj .

For each candidate j ∈ T , we compute a one-step lookahead
score that estimates how many next-step candidates remain
parity-matching after committing to yj ← vj . Concretely,
let (r(j)ℓ , v

(j)
ℓ ) denote the outputs of the same decoding strat-

egy F applied to the updated partial sequence after setting
yj ← vj (with revealed set I ∪ {j}). We define

g(j) =
∑

ℓ/∈I∪{j}

1

[
v
(j)
ℓ ∈ Gℓ

]
.
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Finally, we select

k⋆ = argmax
j∈T

g(j),

with ties broken by rj .

When k = 1, this reduces to the standard dgMARK
(greedy strategy). Larger k trades additional computation
for stronger watermark embedding by explicitly preserving
future parity-alignment opportunities.

3.5. Watermark Detection

Given a generated sequence y = (y1, . . . , yn) and the secret
key ξ (used by the hash function f ), we detect the watermark
by measuring how often tokens satisfy the parity condition.
Equivalently, define the parity-matching set Gi = {v ∈ V |
f(v, ξ) ≡ i (mod 2)} and check whether yi ∈ Gi.

Basic Detection (global z-test). Define

mi = 1[yi ∈ Gi] , G =

n∑
i=1

mi.

Because f(·, ξ) is balanced, under non-watermarked gen-
eration we have E[mi] ≈ 1

2 and G ≈ Binomial(n, 1
2 ). We

compute the standard z-score

z =
G− n/2√

n/4
. (1)

We declare y as watermarked if z exceeds a chosen threshold
(one-sided test).

Robust Detection (sliding-window z-statistics). To han-
dle post-editing (e.g., insertion, deletion, and substitution),
we apply the same test on overlapping windows. For a
window length w and start index s, define

Gs =

s+w−1∑
i=s

1[yi ∈ Gi], zs =
Gs − w/2√

w/4
.

Insertions or deletions may shift indices and invert parity
alignment, causing some windows to deviate below 1

2 . We
therefore use a two-sided window aggregated statistic, e.g.,

zwin =
1

S

S∑
s=1

z2s ,

and declare the sequence watermarked if zwin exceeds a
threshold.

4. Experimental Evaluation
4.1. Experimental Setup

Datasets and Prompts. We use two benchmark datasets.
The first is the news-like subset of C4 (Raffel et al., 2023),

Table 1. Empirical error rates. The results are based on texts
generated by multiple dLLMs with multinomial sampling.

Dataset Model PPL
z = 4.0

FPR↓ TNR↑ TPR↑ FNR↓

C4
LLaDA 4.90 0.000 1.000 0.957 0.043

LLaDA 1.5 5.27 0.000 1.000 0.929 0.071
Dream 5.75 0.000 1.000 0.958 0.042

Writing
Prompts

LLaDA 6.00 0.000 1.000 0.983 0.017
LLaDA 1.5 6.34 0.004 0.996 0.733 0.267

Dream 6.87 0.007 0.993 0.682 0.318

which has been widely employed in prior watermarking
studies (Kirchenbauer et al., 2023; Kuditipudi et al., 2024;
Block et al., 2025; Feng et al., 2025). The second is Writing
Prompts (Fan et al., 2018), which provides diverse topics
and narrative styles, ranging from apocalyptic scenarios to
everyday stories. For C4, we randomly sample texts and
truncate them to a fixed length to serve as prompts; for
Writing Prompts, the given prompts are used directly.

Models and Environments. Experiments are conducted
on LLaDA-8B (Nie et al., 2025), LLaDA 1.5-8B (Zhu et al.,
2025), LLaDA 2.0-mini-16B (Bie et al., 2025), and Dream-
7B (Ye et al., 2025). All models used in our experiments
are instruction-following models and generate sequences
of length 256 using block-wise generation (Arriola et al.,
2025; Nie et al., 2025). We adopt block sizes of 32 for the
LLaDA family and 8 for Dream-7B to encourage longer
outputs. Responses are generated for 300 prompts, and we
retain sequences longer than 200 tokens (100 tokens for
Dream-7B, due to its shorter generations). Text quality is
evaluated using perplexity (PPL) computed with Gemma3-
12B (Team et al., 2025), a larger model serving as an oracle.
For LLaDA 2.0, we use a quantized LLaMA 3.3-70B, which
preserves relative trends across watermarking methods.

Sampling Schemes. We consider two sampling schemes:
multinomial sampling, where tokens are drawn from pθ, and
greedy sampling, where the most likely token is chosen at
each step. In both settings, the decoding strategy F follows
the confidence rule unless otherwise stated. Beam search,
as described in Section 3.4, augments these schemes with
one-step lookahead. Additional experiments with entropy
and margin-based decoding are reported in the Appendix.

Evaluation Metrics. Performance is assessed along three
axes: (1) Detectability: measured by z-score (Eq. (1)), false
positive rate (FPR), false negative rate (FNR), and true posi-
tive rate at a fixed false positive rate (TPR@FPR). (2) Text
Quality: measured by perplexity (PPL) and benchmark ac-
curacy. We include three representative benchmarks using
the lm-evaluation-harness (Gao et al., 2023) to measure
downstream capability: MMLU (Hendrycks et al., 2021)
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Table 2. Watermark Detectability Comparison. Empirical results under greedy and multinomial sampling with LLaDA 1.5 on the C4
dataset, reporting perplexity (PPL) and detection metrics. Greedy and multinomial sampling represent the non-watermarked baselines.

Method PPL ↓ FPR↓ TNR↑ TPR↑ FNR↓
TPR@FPR ↑

10% 1% 0.1% 0.01%

Greedy Sampling 4.03 - - - - - - - -

KGW (δ = 1) 4.33 0.0 1.0 0.072 0.928 88.52 62.68 30.14 11.48
KGW (δ = 2) 5.02 0.0 1.0 0.866 0.134 100.00 97.31 93.01 97.63
KGW (δ = 3) 5.83 0.0 1.0 0.970 0.030 100.00 100.00 98.52 97.78
PATTERN-MARK (δ = 1) 4.11 0.0 1.0 0.000 1.000 21.76 4.17 1.39 0.00
PATTERN-MARK (δ = 2) 4.72 0.0 1.0 0.040 0.960 73.50 48.50 20.50 12.00
PATTERN-MARK (δ = 3) 5.86 0.0 1.0 0.584 0.416 96.26 91.59 87.38 78.97
dgMARK 4.44 0.0 1.0 0.540 0.460 97.86 91.98 76.47 60.96

+ 3-beam 4.75 0.0 1.0 0.963 0.037 100.00 99.54 98.62 97.25
+ 5-beam 5.01 0.0 1.0 0.987 0.013 100.00 100.00 99.56 98.69
+ 8-beam 5.16 0.0 1.0 0.991 0.008 100.00 100.00 100.00 99.12

Multinomial Sampling 4.21 - - - - - - - -

KGW (δ = 1) 5.59 0.0 1.0 0.107 0.893 89.80 60.91 32.99 14.21
KGW (δ = 2) 6.38 0.0 1.0 0.876 0.124 99.41 98.82 97.65 91.18
KGW (δ = 3) 7.87 0.0 1.0 0.984 0.016 100.00 99.21 99.21 98.41
PATTERN-MARK (δ = 1) 5.45 0.0 1.0 0.000 1.000 25.26 5.67 1.55 0.00
PATTERN-MARK (δ = 2) 6.33 0.0 1.0 0.060 0.940 78.00 53.50 27.50 16.50
PATTERN-MARK (δ = 3) 7.69 0.0 1.0 0.586 0.414 98.99 95.96 91.41 83.33
dgMARK 5.27 0.0 1.0 0.929 0.071 100.00 100.00 99.41 95.29

+ 3-beam 5.40 0.0 1.0 1.000 0.000 100.00 100.00 100.00 100.00
+ 5-beam 5.76 0.0 1.0 1.000 0.000 100.00 100.00 100.00 100.00
+ 8-beam 6.00 0.0 1.0 1.000 0.000 100.00 100.00 100.00 100.00

(multi-task reasoning), GSM8K (Cobbe et al., 2021) (math-
ematical problem solving), and HumanEval (Chen et al.,
2021) (code generation). (3) Robustness: measured by ROC
curves under token-level editing and paraphrasing attacks.

Baselines. For watermarking baselines, we compare
against two existing methods: KGW (Kirchenbauer et al.,
2023), a representative autoregressive watermarking method,
and PATTERN-MARK (Chen et al., 2025), a watermark-
ing method designed for order-agnostic models. As naive
application of KGW to masked tokens results in unreliable
detection due to violated prefix-based assumptions (Wu
et al., 2025b), results are derived from dLLMs configured
to generate tokens sequentially from left to right.

4.2. Experimental Analyses

Watermark Detectability. Table 1 summarizes the per-
formance of standard dgMARK across models and datasets,
confirming reliable detection with negligible error rates.
Table 2 compares dgMARK against two baselines, KGW
and PATTERN-MARK, under multiple watermark strengths
(δ ∈ {1, 2, 3}). Overall, dgMARK with 3-beam search
achieves the strongest detectability, while incurring a
smaller increase in perplexity than the baselines. Addi-
tional results on LLaDA 2.0 and illustrative generations are
provided in the Appendix, showing a higher parity-matching
ratio for watermarked text than for non-watermarked text.

Effect of Sampling Schemes. Table 2 compares greedy
sampling and multinomial sampling with and without beam
search. As beam size increases (k ∈ {1, 3, 5, 8}), error rates
consistently decrease, demonstrating that one-step looka-
head strengthens parity alignment. Multinomial sampling
generally yields higher perplexity but produces stronger
watermark signals than greedy sampling.

Text Generation Quality. Table 3 reports benchmark
results on MMLU, GSM8K, and HumanEval under
greedy and multinomial sampling, including (1) the non-
watermarked baseline, (2) KGW, (3) PATTERN-MARK,
(4) dgMARK, and (5) dgMARK with 3-beam search. For
KGW and PATTERN-MARK, we set γ = 0.5 and δ = 3,
chosen to match the detectability of dgMARK with 3-beam
search based on Table 2. Across benchmarks, watermarking
induces only minor degradation on MMLU and GSM8K,
while HumanEval exhibits a larger drop, consistent with
the low entropy of code generation tasks (Lee et al., 2024).
Among all methods, dgMARK yields the smallest quality
loss. As shown in Table 2, the perplexity increase of dg-
MARK over the non-watermarked baseline is consistently
smaller than that of KGW and PATTERN-MARK. This sug-
gests that controlling the decoding order provides a less
intrusive watermarking mechanism than manually altering
token probabilities, achieving comparable detectability with
better quality preservation.
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Table 3. Benchmark results. Evaluated on LLaDA, LLaDA 1.5, and Dream under greedy and multinomial sampling. The comparison
includes (1) non-watermarked baseline, (2) KGW, (3) PATTERN-MARK, (4) dgMARK, and (5) dgMARK with 3-beam search.

Model Method
Greedy Sampling Multinomial Sampling

MMLU GSM8K HumanEval MMLU GSM8K HumanEval
(Acc ↑) (Acc ↑) (Pass@1 ↑) (Acc ↑) (Acc ↑) (Pass@1 ↑)

LLaDA

Non-watermarked 0.648 0.797 0.427 0.594 0.775 0.360

KGW 0.558 0.662 0.092 0.520 0.464 0.055
PATTERN-MARK 0.570 0.635 0.134 0.532 0.438 0.073
dgMARK 0.647 0.787 0.280 0.588 0.735 0.226
dgMARK +3-beam 0.647 0.771 0.268 0.580 0.678 0.152

LLaDA 1.5

Non-watermarked 0.650 0.821 0.400 0.601 0.808 0.348

KGW 0.567 0.726 0.104 0.536 0.582 0.092
PATTERN-MARK 0.579 0.670 0.152 0.540 0.513 0.079
dgMARK 0.649 0.814 0.317 0.596 0.759 0.201
dgMARK +3-beam 0.649 0.774 0.207 0.588 0.723 0.134

Dream

Non-watermarked 0.700 0.800 0.427 0.630 0.789 0.420

KGW 0.558 0.661 0.287 0.523 0.444 0.134
PATTERN-MARK 0.594 0.652 0.335 0.551 0.639 0.287
dgMARK 0.695 0.746 0.470 0.647 0.686 0.390
dgMARK +3-beam 0.695 0.701 0.342 0.636 0.648 0.262

Robustness to Post-editing. We evaluate robustness un-
der both token-level edits and paraphrasing attacks. For
token-level attacks, we apply random insertions, deletions,
and substitutions with budgets ϵ ∈ {0.1, 0.2, 0.3, 0.4} and
use sliding-window detection with window size w = 8. Fig-
ure 2 reports ROC curves and shows that dgMARK remains
effective even under heavy perturbations (e.g., ϵ = 0.4).
Additional comparisons with KGW and PATTERN-MARK
are provided in the Appendix.

For paraphrasing attacks, we consider two settings. First,
we use DIPPER-11B (Krishna et al., 2023), a paraphrase-
generation model commonly used to stress-test watermark
detectors: DIPPER-1 paraphrases with a fixed lexical-
modification ratio, and DIPPER-2 further adds 10% order
diversity. Second, we evaluate paraphrasing by Llama 3-8B
(Instruct) (Grattafiori et al., 2024) using a prompt adapted
from Kirchenbauer et al. (2024) (the exact prompt is pro-
vided in the Appendix). As shown in Figure 3, detectability
decreases as paraphrasing intensity increases for all meth-
ods, but dgMARK, especially with 3-beam search, remains
reliably detectable despite producing lower-PPL text.

5. Practical Considerations
This section discusses practical factors that affect the deploy-
ment of dgMARK in real systems, beyond the core results
in Section 4. In particular, we examine how detectability
scales with output length and how block-wise generation
(i.e., a common strategy for efficient long-form decoding in
dLLMs) interacts with watermark embedding.

Table 4. Effect of block length on watermarking. TPR at FPR
levels of 10%, 1%, 0.1%, and 0.01%, along with PPL on the C4
dataset for dgMARK with block lengths of 8, 16, and 32.

Sampling Block PPL
TPR@FPR

10% 1% 0.1% 0.01%

Multinomial
8 4.98 100.00 97.69 93.06 80.56

16 5.16 99.50 98.02 97.03 89.60
32 5.27 100.00 100.00 99.41 95.29

Greedy
8 4.28 93.42 74.12 48.25 29.82

16 4.42 96.77 86.64 69.59 50.23
32 4.44 97.86 91.98 76.47 60.96

Generation Length. Since dgMARK is detected through
a statistical test on parity matches, longer outputs provide
more evidence and typically improve reliability. We quan-
tify this effect by reporting TPR at several FPR levels (10%,
1%, 0.1%, 0.01%) for n ∈ {16, 32, 64, 128, 256} under
multinomial sampling. As shown in Figure 4, detectability
improves steadily with length. In particular, when n ≥ 200,
dgMARK with beam size k ≥ 3 consistently achieves TPR
= 1.0 even at FPR = 0.01. This suggests that watermark
detection is most reliable for long-form generations (e.g.,
summaries, reports, and stories), while very short outputs
may require either aggregation across multiple responses or
a less stringent operating point.

Block-wise Generation. For efficiency and stability over
long contexts, dLLMs are often decoded in blocks (Arriola
et al., 2025; Nie et al., 2025). To assess the impact of this
design choice, we generate texts with a fixed target length
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Figure 2. ROC curves under post-editing attacks. Illustration of the sliding-window strategy against random deletion, insertion, and
substitution with modification budget ϵ. Watermarks are generated by standard dgMARK (k = 1) using multinomial sampling.
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Figure 3. Detection AUC under paraphrasing attacks. Results for dgMARK with DIPPER (Krishna et al., 2023): (Left) paraphrasing
at predefined ratios via lexical modification; (Middle) paraphrasing with ratio-adjusted lexical modification and an additional 10%
order diversity. Comparative results with KGW and PATTERN-MARK are included to assess relative robustness. (Right) paraphrasing
generated by Llama 3-8B (Instruct), evaluated using ROC curves.
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Figure 4. Watermark detectability vs. sequence length. Results under multinomial sampling with beam sizes k ∈ {1, 3, 5, 8}, reported
as TPR at FPR levels of 10%, 1%, 0.1%, and 0.01%. Generation lengths are set to {16, 32, 64, 128, 256}, where the 256 setting includes
sequences with length ≥ 200.

of 256 tokens using block sizes {8, 16, 32, 64, 128} and
report TPR@FPR and perplexity in Table 4. Because block
sizes of 64 and 128 frequently fail to produce sequences
longer than 200 tokens, we report TPR@FPR only up to
block size 32; the appendix provides the resulting effective
sequence lengths under each setting. Overall, larger block
sizes tend to strengthen watermark embedding (i.e., higher
detectability at the same threshold), while excessively large
block sizes reduce generation stability for long sequences.
In practice, moderate block sizes (e.g., 16 or 32) provide
a favorable balance between efficiency, stable long-form
generation, and watermark reliability.

6. Conclusion
We introduced dgMARK, a decoding-guided watermarking
method for discrete diffusion language models (dLLMs).
Instead of biasing token probabilities, dgMARK embeds
watermark signals by guiding the decoding order, without
reweighting the model’s learned probabilities. Comprehen-
sive experiments demonstrate that dgMARK provides strong
detectability, minimal quality degradation, and robustness
against post-editing. These results establish decoding-based
watermarking as an effective and practical approach for
ensuring provenance in dLLMs.
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Impact Statement
This paper investigates watermarking techniques for text
generated by discrete diffusion language models, with the
goal of further advancing the field of machine learning.
There are many potential societal consequences of our work,
none of which we feel must be specifically highlighted here.
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Watermarking diffusion language models. arXiv preprint
arXiv:2509.24368, 2025.

Grattafiori, A., Dubey, A., Jauhri, A., Pandey, A., Kadian,
A., Al-Dahle, A., Letman, A., Mathur, A., Schelten, A.,
Vaughan, A., et al. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783, 2024.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding. In ICLR, 2021.

Ho, J., Jain, A., and Abbeel, P. Denoising diffusion proba-
bilistic models. In NeurIPS, 2020.

Jiang, J., Wang, F., Shen, J., Kim, S., and Kim, S. A survey
on large language models for code generation. ACM
TOSEM, 2026.

Karanjai, R. Targeted phishing campaigns using large
scale language models. arXiv preprint arXiv:2301.00665,
2022.

Kasneci, E., Seßler, K., Küchemann, S., Bannert, M.,
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A. LLM Usage
This manuscript made limited use of Large Language Models (LLMs) for language editing only. Their role was restricted to
improving readability—such as grammar, style, and flow—without contributing to the conception of ideas, analyses, or
results. All scientific content remains the original work of the authors, who carefully reviewed any edited text to ensure
accuracy and integrity.

B. Reproducibility
For reproducibility, Table 5 lists the external resources employed in our experiments, along with their corresponding licenses
and references.

Table 5. List of external resources. Resources used in the experiments, with corresponding licenses and references.

Resource License Reference

LLaDA Instruct MIT License Nie et al. (2025)
LLaDA 1.5 MIT License Zhu et al. (2025)
LLaDA 2.0-mini Apache License 2.0 Bie et al. (2025)
Dream Instruct Apache License 2.0 Ye et al. (2025)
Gemma3 Gemma Team et al. (2025)
Meta-Llama-3-8B Llama3 Grattafiori et al. (2024)
Llama-3.3-70B-Instruct-AWQ1 Llama3.3 Grattafiori et al. (2024)
Dipper Paraphraser Apache License 2.0 Krishna et al. (2023)
C4 ODC-BY Raffel et al. (2023)
WritingPrompts MIT License Fan et al. (2018)
MMLU MIT License Hendrycks et al. (2021)
GSM8K MIT License Cobbe et al. (2021)
HumanEval MIT License Chen et al. (2021)

C. dgMARK with Beam Search Algorithm
Algorithm 3 summarizes the complete procedure of Top-k one-step lookahead beam search.

Algorithm 3 dgMARK with Top-k One-Step Lookahead

Require: Prompt x; output length n; predictor pθ; decoding strategy F ; watermark key ξ; beam size k
1: y ← [MASK]n; I ← ∅
2: function NEXTMATCHCOUNT(y, I)
3: Compute (r̂ℓ, v̂ℓ) for all ℓ /∈ I using F(ℓ; pθ, x, yI)
4: return

∑
ℓ/∈I 1[v̂ℓ ∈ Gℓ]

5: end function
6: for i = 1, . . . , n do
7: Compute (rj , vj) for all j /∈ I using F(j; pθ, x, yI)
8: C ← {j /∈ I|vj ∈ Gj}
9: if C = ∅ then C ← {j /∈ I}

10: end if
11: T ← indices of the top-k elements of C by rj
12: k⋆ ← argmaxj∈T NEXTMATCHCOUNT(y with yj←vj , I ∪ {j})
13: yk⋆ ← vk⋆ ; I ← I ∪ {k⋆}
14: end for
15: Return y

1https://huggingface.co/kosbu/Llama-3.3-70B-Instruct-AWQ
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D. Experiment Details
D.1. Baselines

We evaluate watermarking performance using PATTERN-MARK and KGW, which represent watermarking schemes
for order-agnostic and autoregressive-style generation, respectively. PATTERN-MARK operates independently of token
generation order, whereas KGW requires a left-to-right decoding process. Accordingly, when applying KGW to dLLMs, we
generate tokens sequentially in a left-to-right manner and use 1-gram tokens as watermark keys for embedding. For KGW,
we use γ = 0.5. For PATTERN-MARK, we set γ = 0.5 and use two alternating patterns, (0, 1) and (1, 0), which induce an
alternating color (green/red) assignment across token positions. In our experiments, the deterministic function f maps each
token to a binary value based on the token ID modulo 2. Although we use a simple modulo operation for the mapping in our
experiments, the framework is designed to be compatible with any cryptographically secure pseudorandom functions (PRFs).
By employing a PRF for f(v, ξ), the resulting binary assignment becomes computationally infeasible to predict without
knowledge of the secret key ξ, thereby enhancing the resilience of the watermark against adversarial reverse-engineering.

D.2. Evaluation Details

For benchmark evaluation, we adopted a block-wise text generation strategy. We utilized the authors’ original implementa-
tions for the LLaDA family and followed prior studies to implement the same strategy for Dream-7B. Table 6 summarizes
the block and total sequence lengths used in our evaluation. The confidence strategy was applied across all benchmarks. The
non-watermarked baselines for the LLaDA family were evaluated using the block lengths specified in their original papers,
while Dream-7B was evaluated using the block lengths reported in Table 6.

D.3. Hardware Specification

The experiments were conducted under the following hardware configurations: (1) Text generation: Non-watermarked
and watermarked text generated on NVIDIA GeForce RTX 4090, while text generation for LLaDA 2.0 was performed on
an NVIDIA L40S. (2) Text perplexity (PPL) computation: Performed on NVIDIA GeForce RTX 5090. (3) Benchmark
evaluations: The LLaDA family was evaluated on RTX 5090, Dream-7B evaluated on an RTX 4090.

Table 6. Inference configurations. A block length shorter than the total length indicates the use of the block-wise generation strategy for
LLaDA-8B, LLaDA 1.5-8B, and Dream-7B.

LLaDA-8B LLaDA 1.5-8B Dream-7B
Block Length Total Length Block Length Total Length Block Length Total Length

MMLU 3 3 3 3 3 3
GSM8K 8 256 16 256 32 256
HumanEval 8 512 8 512 32 512

D.4. Llama Paraphrase Attack

For paraphrasing in robustness evaluations of watermarking, we use LLaMA 3-8B (Instruct) with a task-specific instruction
to generate paraphrases. The model is queried with the following prompt, using a sampling temperature of 0.2 and a
maximum token limit of 256. The prompt is adapted from prior work (Kirchenbauer et al., 2024).

Llama 3 Prompt

As an expert copy-editor, please rewrite the following text in your own voice while ensuring that the final output
contains the same information as the original text and has roughly the same length. Please paraphrase all sentences
and do not omit any crucial details. Additionally, please take care to provide any relevant information about public
figures, organizations, or other entities mentioned in the text to avoid any potential misunderstandings or biases.
Respond only with the paraphrased text.
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E. Additional Results
E.1. Computational Overhead

We measured the per-token decoding time of dgMARK, and Table 7 shows that multinomial sampling with k = 1 introduces
negligible overhead relative to standard decoding. Increasing the beam size to k = 3 yields a substantial improvement in
detectability while increasing cost by only ≈ 2.7×. Larger beam sizes naturally incur additional overhead, as beam search
evaluates multiple candidate sequences in parallel.

Table 7. Computational overhead. Comparison of ms/token and overhead between the non-watermark baseline and dgMARK with
beam sizes k ∈ {1, 3, 5}

Method Non-watermarked
Watermarked

dgMARK +3 beam +5 beam

ms / token 60.52 69.95 165.50 229.69
Overhead 1.00× 1.16× 2.73× 3.80×

E.2. Watermark Detectability

Results on LLaDA 2.0. Table 8 compares the watermark detectability of dgMARK with baselines, KGW and PATTERN-
MARK, under different watermark strengths (δ ∈ {1, 2, 3}). The results indicate that dgMARK with 3-beam search
consistently achieves higher detectability while maintaining lower PPL compared to existing watermarking methods.

Evaluation with Additional Decoding Strategies. Tables 9 and 10 summarize the experimental results of dgMARK with
entropy and margin-based decoding strategies, respectively. Under the entropy strategy, increasing the beam size k led to
substantially stronger watermark detectability with only a marginal increase in PPL. In contrast, under the margin strategy,
the PPL increase was negligible at k = 1 but grew considerably for k ≥ 3, while detectability remained high. Moreover,
Table 9 demonstrates that watermark embedding is more effective under multinomial sampling than greedy sampling.

Evaluation on an Additional Dataset. Table 11 reports results on the Writing Prompts dataset with LLaDA 1.5-8B. Across
prompts inducing diverse writing styles, dgMARK consistently achieved higher watermark detectability as the beam size
k increased. Notably, dgMARK incurred only a negligible PPL penalty, indicating effective watermarking with minimal
impact on text quality.

E.3. Text Generation Quality

Additional Perplexity Analysis. Figure 9 illustrates the PPL comparison between non-watermarked text and text water-
marked using dgMARK under the entropy strategy. The results demonstrate that dgMARK is compatible with various
decoding strategies while incurring minimal quality degradation.

Additional Qualitative Results. Illustrative examples in Figure 16 highlight the difference in parity-matching ratios
between watermarked and non-watermarked text. Tables 12 to 14 present qualitative examples from LLaDA, LLaDA 1.5,
and Dream under multinomial sampling, and highlight differences in the parity-matching ratio between non-watermarked
and watermarked text.

E.4. Robustness against Post-editing Attacks

Distributions of Parity-Matching Ratios. Figures 5 to 7 show the distributions of window-level parity-matching ratios
under random token insertion, deletion, and substitution attacks, respectively. For insertions and deletions, parity shifts
cause multimodality in the matching ratios, providing an indicator of watermark presence. In contrast, under substitutions,
the distribution of matching ratios tends to resemble the intact distribution of watermarked text. Consequently, across
all three perturbation types, the distribution of matching ratios for watermarked text remains distinguishable from that of
non-watermarked text.

Comparison with Existing Methods. Figure 8 presents ROC curves comparing dgMARK with existing watermarking
schemes, including KGW and PATTERN-MARK. dgMARK outputs lower-PPL text while achieving detection performance
comparable to existing methods and demonstrating notable robustness to random substitution attacks.
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Hyperparameter Sensitivity. Figures 10 and 11 illustrate ROC curves for watermark detection against the DIPPER-1 and
DIPPER-2 attack scenarios, using the sliding-window strategy with window sizes w ∈ {8, 16, 32}. The results indicate
robustness regardless of window size, with a slight advantage for smaller windows. Figures 12 to 14 present ROC curves for
watermark detection against random token insertion, deletion, and substitution attacks, evaluated at beam size k ∈ {3, 5, 8}.
The results demonstrate that increasing k consistently strengthens robustness and watermark detectability.

E.5. Ablation on Generated Length

Figure 15 shows the distribution of sequence lengths generated from 300 prompts using the block-wise generation strategy.
The target length was fixed at 256 tokens, with block sizes set to {8, 16, 32, 64, 128}. The generated sequence lengths were
grouped into five bins (1–50, 51–100, 101–150, 151–200, and 201–256 tokens) to visualize the proportion of sequences in
each range. The results suggest that block size influences the sequence lengths in both multinomial and greedy sampling.
Smaller block sizes (e.g., 8 or 16) tend to yield a higher proportion of longer sequences, whereas larger block sizes (e.g.,
64 or 128) often lead to most sequences clustering in the 1–50 token range, indicating frequent failures to generate long
sequences.

Table 8. Watermark Detectability Comparison. Empirical results under greedy and multinomial sampling with LLaDA 2.0 on the C4
dataset, reporting perplexity (PPL) and detection metrics. Greedy and multinomial sampling represent the non-watermarked baselines.

Method PPL ↓ FPR↓ TNR↑ TPR↑ FNR↓
TPR@FPR ↑

10% 1% 0.1% 0.01%

Greedy Sampling 5.63 - - - - - - - -

KGW (δ = 1) 6.30 0.0 1.0 0.038 0.962 82.78 46.89 19.62 9.09
KGW (δ = 2) 7.44 0.0 1.0 0.701 0.299 99.02 95.10 87.25 75.49
KGW (δ = 3) 8.63 0.0 1.0 0.959 0.041 100.00 100.00 97.96 96.94
PATTERN-MARK (δ = 1) 5.71 0.0 1.0 0.000 1.000 13.38 2.82 0.70 0.00
PATTERN-MARK (δ = 2) 6.55 0.0 1.0 0.038 0.962 60.90 33.83 15.04 9.77
PATTERN-MARK (δ = 3) 7.89 0.0 1.0 0.652 0.348 94.33 85.82 74.47 58.87
dgMARK 7.33 0.0 1.0 0.817 0.183 99.30 98.59 92.25 87.32

+ 3-beam 8.15 0.0 1.0 0.980 0.020 100.00 100.00 100.00 98.00

Multinomial Sampling 6.48 - - - - - - - -

KGW (δ = 1) 8.03 0.0 1.0 0.034 0.966 83.17 51.44 26.44 6.37
KGW (δ = 2) 9.06 0.0 1.0 0.787 0.213 99.53 97.16 92.89 82.94
KGW (δ = 3) 10.56 0.0 1.0 0.975 0.025 100.00 100.00 98.99 98.49
PATTERN-MARK (δ = 1) 9.40 0.0 1.0 0.000 1.000 19.42 4.32 0.00 0.00
PATTERN-MARK (δ = 2) 10.70 0.0 1.0 0.031 0.969 76.40 51.55 27.33 16.15
PATTERN-MARK (δ = 3) 13.76 0.0 1.0 0.409 0.591 98.25 91.23 81.87 68.42
dgMARK 9.26 0.0 1.0 0.979 0.021 100.00 100.00 99.31 98.61

+ 3-beam 10.86 0.0 1.0 1.000 0.000 100.00 100.00 100.00 100.00

Table 9. Error rates of watermarking. Empirical results under greedy and multinomial sampling with LLaDA-1.5 with entropy strategy
on the C4 dataset, reported across different z-score thresholds

Sampling PPL ↓
z = 4.0 z = 5.0

FPR TNR TPR FNR FPR TNR TPR FNR

dgMARK (Greedy) 4.51 0.0 1.0 0.511 0.489 0.0 1.0 0.216 0.784
+ 3-beam 4.84 0.0 1.0 0.970 0.030 0.0 1.0 0.867 0.113
+ 5-beam 5.02 0.0 1.0 0.987 0.127 0.0 1.0 0.970 0.030
+ 8-beam 5.16 0.0 1.0 0.996 0.004 0.0 1.0 0.960 0.040

dgMARK (Multinomial) 6.39 0.0 1.0 0.995 0.005 0.0 1.0 0.985 0.155
+ 3-beam 6.16 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+ 5-beam 6.42 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+ 8-beam 6.78 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
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Table 10. Error rates of watermarking. Empirical results under greedy sampling with LLaDA-1.5 with margin strategy on the C4
dataset, reported across different z-score thresholds. As the margin strategy (Kim et al., 2025) assumes greedy token selection, we report
results using greedy selection.

Sampling PPL ↓
z = 4.0 z = 5.0

FPR TNR TPR FNR FPR TNR TPR FNR

dgMARK (Greedy) 4.40 0.0 1.0 0.601 0.399 0.0 1.0 0.282 0.718
+ 3-beam 9.17 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+ 5-beam 14.77 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000
+ 8-beam 17.94 0.0 1.0 1.000 0.000 0.0 1.0 1.000 0.000

Table 11. Error rates of watermarking. Empirical results under greedy and multinomial sampling with LLaDA-1.5 on the “Writing
Prompts”, reported across different z-score thresholds

Sampling PPL ↓
z = 4.0 z = 5.0

FPR TNR TPR FNR FPR TNR TPR FNR

dgMARK (Greedy) 5.37 0.0 1.0 0.223 0.777 0.0 1.0 0.058 0.942
+ 3-beam 5.42 0.0 1.0 0.836 0.164 0.0 1.0 0.424 0.576
+ 5-beam 5.72 0.0 1.0 0.951 0.049 0.0 1.0 0.684 0.316
+ 8-beam 5.92 0.0 1.0 0.976 0.024 0.0 1.0 0.868 0.133

dgMARK (Multinomial) 6.34 0.004 0.996 0.733 0.257 0.0 1.0 0.235 0.765
+ 3-beam 6.44 0.004 0.996 0.987 0.013 0.0 1.0 0.811 0.189
+ 5-beam 6.48 0.0 1.0 0.995 0.005 0.0 1.0 0.966 0.034
+ 8-beam 6.95 0.0 1.0 0.995 0.005 0.0 1.0 0.976 0.024
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Figure 5. Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1) non-watermarked texts (Non
WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with “random token insertions”, where the number of
inserted tokens increases from left to right.
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WM (deletion)
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Figure 6. Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1) non-watermarked texts (Non
WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with “random token deletion”, where the number of deleted
tokens increases from left to right.
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Figure 7. Illustration of the distribution of parity alignment. At window size w = 32, comparison of (1) non-watermarked texts (Non
WM), (2) intact watermarked texts (WM), and (3) watermarked texts (WM) with “random token substitution”, where the number of
substituted tokens increases from left to right.
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Figure 8. ROC curves under post-editing attacks. Illustration of the sliding-window strategy against (A) random deletion, (B) insertion,
and (C) substitution with modification budget ϵ. The comparison includes (1) KGW, (2) PATTERN-MARK, and (3) dgMARK with
3-beam search.
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Figure 9. Comparison of text perplexity using the “entropy strategy”: (1) Non-watermarked texts (Non WM) and (2) Watermarked
texts generated by dgMARK with beam sizes k ∈ {1, 3, 5, 8}. Lighter green represents k = 1 and darker green represents k = 8
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Figure 10. ROC curves under the “DIPPER-1” setting. Illustration of the sliding-window strategy for detection performance against
paraphrasing attacks, evaluated at window sizes w ∈ {8, 16, 32}.
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Figure 11. ROC curves under the “DIPPER-2” setting. Illustration of the sliding-window strategy for detection performance against
paraphrasing attacks, evaluated at window sizes w ∈ {8, 16, 32}.
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Figure 12. ROC curves under post-editing attacks. Illustration of the sliding-window strategy against “random token insertion”
attacks with modification budget ϵ, when texts are generated with beam sizes {3, 5, 8}.
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Figure 13. ROC curves under post-editing attacks. Illustration of the sliding-window strategy against “random token deletion” attacks
with modification budget ϵ, when texts are generated with beam sizes {3, 5, 8}.
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Figure 14. ROC curves under post-editing attacks. Illustration of the sliding-window strategy against “random token substitution”
attacks with modification budget ϵ, when texts are generated with beam sizes {3, 5, 8}.
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Figure 15. Distribution of generated sequence lengths. Text sequences are produced using the block-wise generation strategy with
multinomial and greedy decoding under block sizes {8, 16, 32, 64, 128}.

Prompt The most saddest love story you can ever think of

Non-watermarked Watermarked (dgMARK)

Parity-Matching Ratio = 0.55... Parity-Matching Ratio = 0.74...

In a small village, there lived a young woman

named Lily. She was a kind-hearted and gen-

tle soul, always willing to help others. One 
day, she met a young man named Jack, who 
was also kind-hearted and gentle. They fell in 

love and spent their days together, sharing 
laughter and tears. 

However, their happiness was short-lived. 
One day, a terrible earthquake struck the  
village, killing many people, including Lily 
and Jack. The village was left in ruins, and 

the survivors were left to pick up the pieces 

of their lives. [...continues]

In a small town, there was a young girl 
named Lily who lived in a small house with 
her parents. One day, she met a young man 
named Jack who was from a wealthy family. 
They shared a lot in common and soon fell 
deeply in love. 

However, their happy moment was short-
lived. Lily's parents did not approve of their 
relationship, and they forced Jack to leave 
Lily behind. Jack was heartbroken, but he did 
not give up on her. He waited for Lily for 
many years, but she never came back. 
[...continues]

Figure 16. Non-watermarked vs. watermarked text. Generated by LLaDA-1.5 on the Writing Prompts dataset. Tokens highlighted in
green indicate parity matches.
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Table 12. Non-watermarked vs. watermarked text. Generated by “LLaDA-8B” on the Writing Prompts dataset with multinomial
sampling, with parity-matching ratios reported for the outputs.

Prompt Non-watermarked Watermarked

A kid doodling in a math class acciden-
tally creates the world ’s first functional
magic circle in centuries.

That sounds like quite an adventure! The
kid’s doodling in a math class turned into
a groundbreaking discovery. Can you
imagine the excitement and wonder that
must have filled the room? The teacher
and classmates must have been in awe,
trying to replicate the magic circle, and
perhaps even asking the kid to explain
how it works. [...continues]
(Matching Ratio = 0.54)

That sounds like a fascinating and un-
expected scenario! The idea of a child
doodling in math class and accidentally
stumbling upon a functional magic circle
is intriguing. The concept of a “magic
circle” is often associated with folklore
and mythology, so the idea of such a dis-
covery happening in a classroom setting
is quite captivating. [...continues]
(Matching Ratio = 0.74)

A person with a high school education
gets sent back into the 1600s and tries
to explain science and technology to the
people.

That sounds like a fascinating sce-
nario! A person with a high school ed-
ucation transported to the 1600s would
likely face significant challenges in try-
ing to explain science and technology to
the people of the time.
In the 1600s, science was still in its early
stages, and most people had a limited un-
derstanding of the natural world. They
relied heavily on religion, magic, and su-
perstition to explain the world around
them.
The person would need to [...continues]
(Matching Ratio = 0.57)

That sounds like an intriguing scenario!
A person with a high school education
transported to the 1600s would likely
face many challenges in explaining sci-
ence and technology to the people of that
time. The 1600s were a time of great
religious and philosophical debates, and
many people were still grappling with the
mysteries of the universe.
However, the person with a high school
education would likely be able to pro-
vide a basic overview of scientific con-
cepts [...continues]
(Matching Ratio = 0.70)

You were born on a colonizing spacecraft
on your way to a distant star . You are
the middle generation of history ; born to
late to have seen Earth , and to early to
live to see your destination.

What a fascinating scenario! You were
born on a colonizing spacecraft, which
means you’re part of a pioneering human
civilization that’s expanding beyond our
home planet. As the middle generation
of history, you’re caught between the era
of Earth and the era of your new home, a
distant star.
Imagine the challenges and opportuni-
ties that come with living on a spacecraft.
You’d have to adapt to a new environ-
ment, learn a new language, and develop
a new way of [...continues]
(Matching Ratio = 0.43)

That’s a fascinating scenario! As the mid-
dle generation of history, you would have
witnessed the dawn of space travel and
the establishment of a new civilization
on a distant star system. Your lifetime
would be marked by the challenges of
adapting to a new environment, develop-
ing cutting-edge technology, and explor-
ing the vastness of space.
As a colonizing spacecraft, you would
have been exposed to microgravity envi-
ronments, artificial gravity, and the com-
plexities of space travel. [...continues]
(Matching Ratio = 0.73)

Narrate a game of Civilization as though
it were excerpted from a history text-
book.

The game of Civilization is a strategy
simulation game that allows players to
experience the development of ancient
civilizations. The game begins with
the establishment of a small settlement,
and players must gather resources, build
cities, and wage wars to expand their ter-
ritory. The game allows players to de-
velop different aspects such as agricul-
ture, architecture, [...continues]
(Matching Ratio = 0.46)

In 2500, the city of Nineveh was es-
tablished on the banks of the Euphrates
River. Under the leadership of Ham-
murabi, its king, the city grew rapidly
and became a major power in the region
ofumeria. The code of Hammurabi, a set
of laws, became a model for other cities
in the region.
In 1800 BC, the city of Susa was estab-
lished on the [...continues]
(Matching Ratio = 0.68)
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Table 13. Non-watermarked vs. watermarked text. Generated by “LLaDA 1.5-8B” on the Writing Prompts dataset with multinomial
sampling, with parity-matching ratios reported for the outputs.

Prompt Non-watermarked Watermarked

A kid doodling in a math class acciden-
tally creates the world ’s first functional
magic circle in centuries.

That sounds like a fascinating scenario!
The idea of a kid doodling in math class
and accidentally creating a functional
magic circle is quite intriguing. It’s a
testament to the power of curiosity and
the importance of encouraging students
to explore and experiment with their in-
terests.
The magic circle, also [...continues]
(Matching Ratio = 0.55)

That sounds like a fascinating and un-
expected event! The idea of creating a
functional magic circle is intriguing, es-
pecially in the context of mathematics
and geometry. Magic circles, also known
as false circles, are shapes that appear
to be circles, but are actually composed
of straight lines and contain straight an-
gles. [...continues]
(Matching Ratio = 0.73)

A person with a high school education
gets sent back into the 1600s and tries
to explain science and technology to the
people.

That sounds like a fascinating scenario.
A person with a high school education
trying to explain science and technology
to the people in the 1600s would likely
face significant challenges, as the under-
standing and acceptance of scientific con-
cepts were extremely limited at that time.
The person would need to be patient,
persistent, and creative in their ap-
proach. [...continues]
(Matching Ratio = 0.53)

That sounds like an intriguing scenario!
A person with a high school education
trying to communicate science and tech-
nology to people in the 1600s would
be quite a challenge. They would
need to explain complex concepts like
physics, mathematics, astronomy, and
even biology in a way that is relevant
and understandable to the people of the
time. [...continues]
(Matching Ratio = 0.68)

You were born on a colonizing spacecraft
on your way to a distant star . You are
the middle generation of history ; born to
late to have seen Earth , and to early to
live to see your destination.

What a fascinating scenario. You’re the
middle generation of history, born on a
colonizing spacecraft on your way to a
distant star. This is a unique and extraor-
dinary experience.
As a child, you would have grown up in
a microgravity environment, surrounded
by advanced technology and a diverse
group of people from different back-
grounds. You would have had access to
the latest education, healthcare, and en-
tertainment, [...continues]
(Matching Ratio = 0.50)

That’s a fascinating scenario! To be born
on a colonizing spacecraft on the way to a
distant star, and being the middle genera-
tion of history, would mean that you were
born after the spacecraft left Earth but
before it arrived at its destination. This
would offer a unique perspective on both
Earth and the distant planet.
In this situation, you would likely have
grown up in a place far away from
Earth, experiencing firsthand the chal-
lenges [...continues]
(Matching Ratio = 0.78)

Narrate a game of Civilization as though
it were excerpted from a history text-
book.

In the year 2000, the game of Civiliza-
tion was released by Sid Meier’s Civi-
lization series. The game was played by
two players, each of whom would con-
trol one of the ten different civilizations:
China, Egypt, Greece, Rome, Spain, Eng-
land, France, Germany, Russia, and the
United States. The game was divided
into six phases: Exploration, Expansion,
Science, Culture, Religion, and Warfare.
The game was played on a map that con-
sisted of land, water, and cities. Players
had to build their cities, [...continues]
(Matching Ratio = 0.53)

In the game of Civilization, you take
on the role of one of the ancient civi-
lizations: Egypt, Greece, Rome, China,
Rome, Egypt, or Inca. Each civilization
has its unique characteristics, strengths,
and weaknesses. The game begins with
the establishment of your city, which
is the foundation of your empire. You
must then build structures to expand
your empire, such as roads, walls, build-
ings, temples, markets, libraries, theaters,
schools, universities, and government
buildings. [...continues]
(Matching Ratio = 0.69)
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Table 14. Non-watermarked vs. watermarked text. Generated by “Dream-7B” on the Writing Prompts dataset with multinomial
sampling, with parity-matching ratios reported for the outputs.

Prompt Non-watermarked Watermarked

A kid doodling in a math class acciden-
tally creates the world ’s first functional
magic circle in centuries.

During math class, a student named Alex
was quietly doodling in their notebook,
trying to escape the monotony of the
lesson. As they drew a simple circle,
they began to notice something strange.
The circle seemed to have a life of its
own, shifting and changing as if it were
alive. Curious, Alex began to experiment
with the circle, discovering that it had
unique [...continues]
(Matching Ratio = 0.59)

Once upon a time, in a small town, there
lived a young high school student named
Tom. He wasn’t particularly fond of
math, but he had a knack for art and
drawing. One day, while bored during
his geometry class, he began doodling in
his notebook. He started drawing differ-
ent shapes and patterns, trying to come
up with some unique and interesting de-
signs. [...continues]
(Matching Ratio = 0.70)

A person with a high school education
gets sent back into the 1600s and tries
to explain science and technology to the
people.

The 1600s were a time of great explo-
ration and discovery in the fields of sci-
ence and technology. During this time,
people were exploring the mysteries of
the natural world and trying to under-
stand the workings of the universe. How-
ever, the understanding of science and
technology was quite limited compared
to what we know [...continues]
(Matching Ratio = 0.42)

During the 1600s, the concept of science
and technology would have been foreign
to many people, who still believed in the
teachings of the Church and superstition.
However, a person with a high school
education would try to explain the basics
of science and technology in a simple
and straightforward manner. They would
start [...continues]
(Matching Ratio = 0.74)

You were born on a colonizing spacecraft
on your way to a distant star . You are
the middle generation of history ; born to
late to have seen Earth , and to early to
live to see your destination .

As a middle generation on the colonizing
spacecraft, I have had the privilege of
witnessing the progress of our mission
and the challenges we faced along the
way. Growing up on the spacecraft, I
learned the history of our journey and the
importance of our mission to establish a
new home for humanity on a distant star.
I remember the days when I would look
out the [...continues]
(Matching Ratio = 0.51)

As a middle generation on a colonizing
spacecraft on our way to a distant star, I
experience a unique blend of longing and
curiosity. Growing up within the confines
of spacecraft, I never got to witness the
beauty of Earth, the vastness of the night
sky, or the familiarity of my ancestral
home. However, I am fortunate to have
the opportunity to explore the unknown
and witness the far reaches of [...contin-
ues]
(Matching Ratio = 0.82)

Narrate a game of Civilization as though
it were excerpted from a history text-
book.

In the year 4000, the dawn of the an-
cient era was marked by the rise of the
first civilizations around the world. The
game began with the establishment of the
first city-states along the banks of the Eu-
phrates and Tigris rivers in Mesopotamia.
As the game progressed, the civilizations
made advancements in agriculture, archi-
tecture, and trade, laying the [...contin-
ues]
(Matching Ratio = 0.52)

In the heart of the ancient world, rival
civilizations faced off in the pursuit of
prosperity and dominance. The game of
civilization was played in the arena of
time, with each turn representing a chap-
ter in the grand tapestry of history. As the
game advanced, so did the complexities
of technology, diplomacy, and warfare.
The early game saw the rise of cities,
growth [...continues]
(Matching Ratio = 0.83)
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